Sains Malaysiana 53(5)(2024): 1167-1183
http://doi.org/10.17576/jsm-2024-5305-15
Adsorption
of Heavy Metal from Wastewater by Bioabsorbent Modified Azolla microphylla
and Lemna minor
(Penjerapan
Logam Berat daripada Air Sisa oleh Penyerap Bio Azolla microphylla dan Lemna
minor Terubah Suai)
NASUHA BINTI MOHAMAD NASROL1, NOORASHIKIN
MD SALEH1,*, TANUSHA DEVI A/P ELAN SOLAN1, NOR YULIANA
YUHANA1, FARHANINI YUSOFF2 & SALIZA ASMAN3
1Department of Chemical and Process Engineering,
Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
2Faculty of Science and Marine Environment, Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
3Department of Physics and Chemistry, Faculty of Applied
Sciences and Technology, University Tun Hussein Onn Malaysia, UTHM Pagoh
Campus, Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84600 Muar, Johor,
Malaysia
Diserahkan: 22 November 2023 /Diterima: 3 April 2024
Abstract
Environmental toxicity from
rapid industrialization raises concerns about water pollution caused by
industrial waste and urban sewage. Aquatic macrophytes, such as the Azolla
species, have shown promise in absorbing heavy metals and nutrients from water.
This study introduces a novel approach by evaluating Azolla Microphylla
and lemna minor as an economical adsorbent for copper removal from rivers.
Moreover, this study stands out by conducting thorough characterization
analyses. The adsorbent material underwent XRD, SEM, BET, and FTIR analyses
after being crushed and sieved to 1-2 mm. Copper was extracted from river water
using UV-Vis detection at 285 nm. Optimal conditions for adsorption were
determined at pH 4, 30 minutes of contact time, and 0.4 g of adsorbent. Copper
concentrations in the Sungai Petani, Sungai Selangor, and Sungai Langat ranged
from 2 mgL-1 to 5 mgL-1. Azolla proves effective as a
copper adsorbent due to its simplicity in sample preparation, time-saving
benefits, cost-effectiveness compared to conventional systems, and high copper
recovery rate. By successfully removing copper, a prevalent heavy metal
contaminant in industrial waste and urban sewage, this research contributes to
achieving Sustainable Development Goal 6 for clean and safe water supplies.
Keywords: Adsorbent;
characterization; copper; river water; UV-Vis analysis
Abstrak
Kesitotoksikan alam sekitar
akibat industrialisasi pesat menimbulkan kebimbangan mengenai pencemaran air
akibat sisa industri dan kumbahan bandar. Makrofit akuatik, seperti spesies
Azolla, telah menunjukkan potensi dalam menyerap logam berat dan nutrien daripada
air. Kajian ini memperkenalkan pendekatan baharu dengan menilai Azolla
microphylla dan Lemna minor sebagai bahan penjerap yang ekonomi untuk
menyingkirkan kuprum dari sungai. Selain itu, kajian ini menyerlah dengan
menjalankan analisis pencirian yang teliti. Bahan penjerap menjalani analisis
XRD, SEM, BET dan FTIR selepas dihancurkan dan diayak hingga 1-2 mm. Kuprum
diekstrak daripada sampel air sungai menggunakan pengesanan UV-Vis pada 285 nm.
Keadaan optimum untuk penjerapan ditentukan pada pH 4, 30 minit waktu sentuhan,
dan 0.4 g penjerap. Kepekatan kuprum di Sungai Petani, Sungai Selangor dan
Sungai Langat berkisar antara 2 mgL-1 hingga 5 mgL-1.
Azolla terbukti berkesan sebagai penjerap kuprum kerana cara penyediaan sampel
yang mudah, jimat masa, berkos efektif berbanding sistem konvensional, serta
kadar pemulihan kuprum yang tinggi. Dengan berjaya menyingkirkan kuprum,
pencemar logam berat yang biasa terdapat dalam sisa industri dan kumbahan
bandar, kajian ini menyumbang kepada pencapaian Matlamat Pembangunan Lestari 6
untuk bekalan air bersih dan selamat.
Kata kunci:
Air sungai; analisis UV-Vis; kuprum; pencirian; penjerap
RUJUKAN
Abba, M.U., Man, H.C.,
Azis, R.S., Idris, A.I., Hamzah, M.H. & Abdulsalam, M. 2021. Synthesis of
nano-magnetite from industrial mill chips for the application of boron removal:
Characterization and adsorption efficacy. International Journal of Environmental
Research and Public Health 18(4): 1400. doi:10.3390/ijerph18041400
Bianchi, E., Biancalani, A., Berardi, C., Antal, A., Fibbi, D., Coppi,
A., Lastrucci, L., Bussotti, N., Colzi, I., Renai, L., Scordo, C., Del Bubba,
M. & Gonnelli, C. 2020. Improving the efficiency of wastewater treatment
plants: Bio-removal of heavy-metals and pharmaceuticals by Azolla
filiculoides and Lemna minuta. Science of the Total Environment 746: 141219. doi:10.1016/j.scitotenv.2020.141219
Bononi, F.C., Chen, Z., Rocca, D.,
Andreussi, O., Anastasio, C. & Donadio, D. 2020. Bathochromic shift in the
UV-visible absorption spectra of phenols at ice surfaces: Insights from
first-principles calculations. The Journal of Physics Chemistry A 124(44): 9288-9298. DOI: 10.1021/acs.jpca.0c07038
El-Naggar, N.E.A., Hamouda, R.A., Saddiq, A.A. & Alkinani, M.H.
2021. Simultaneous bioremediation of cationic copper ions and anionic methyl
orange azo dye by brown marine alga Fucus vesiculosus. Scientific
Reports 11: 3555. doi:10.1038/s41598-021-82827-8
Fikirdeşici-Ergen, Ş., Üçüncü-Tunca, E., Kaya, M. & Tunca,
E. 2018. Bioremediation of heavy metal contaminated medium using Lemna
minor, Daphnia magna and their consortium. Chemistry and Ecology 34(1): 43-55. doi:10.1080/02757540.2017.1393534
Gaggelli, E., Kozlowski, H., Valensin, D. & Valensin, G. 2006.
Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and
Parkinson's diseases and amyotrophic lateral sclerosis). Chemical Reviews 106(6): 1995-2044. doi:10.1021/cr040410w
Grassi, M., Kaykioglu, G., Belgiorno, V. & Lofrano, G. 2012. Removal of emerging contaminants from
water and wastewater by adsorption process. In Emerging
Compounds Removal from Wastewater, edited by Lofrano, G. SpringerBriefs in
Molecular Science Dordrecht: Springer.
Gümüş, D. & Gümüş, F. 2019. The use of a wetland plant as
a new biosorbent for treatment of water contaminated with heavy metals:
Nonlinear analyses, modification, competitive effects. Environmental
Technology and Innovation 16: 100483. doi:10.1016/j.eti.2019.100483
Guo, X., Li, M., Liu, A., Jiang, M., Niu, X. & Liu, X. 2020.
Adsorption mechanisms and characteristics of Hg2+ removal by
different fractions of biochar. Water (Switzerland) 12(8): 2105.
doi:10.3390/W12082105
Hevira, L., Munaf, E. & Zein, R. 2015. The use of Terminalia
catappa L. fruit shell as biosorbent for the removal of Pb(II), Cd(II) and
Cu(II) ion in liquid waste. Journal of Chemical and Pharmaceutical Research 7(10): 79-89.
Ibrahim, W.M., Hassan, A.F. & Azab, Y.A. 2016. Biosorption of toxic
heavy metals from aqueous solution by Ulva lactuca activated carbon. Egyptian
Journal of Basic and Applied Sciences 3(3): 241-249.
doi:10.1016/j.ejbas.2016.07.005
Jayasundara, P. 2022. Wastewater treatment by
azolla: A review. Diyala Agricultural Sciences Journal 14(1): 40-46.
doi:10.52951/dasj.22140105
Jones, B.O., John, O.O., Luke, C., Ochieng,
A. & Bassey, B.J. 2016. Application of mucilage from Dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions. Journal
of Environmental Management 177: 365-372. doi:10.1016/j.jenvman.2016.04.011
Jung, K.W., Lee, S.Y., Choi, J.W. & Lee, Y.J. 2019. A facile one-pot
hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: Adsorption
behavior and mechanisms for the removal of copper(II) from aqueous media. Chemical
Engineering Journal 369: 529-541. doi:10.1016/j.cej.2019.03.102
Keawkim, K. &
Khamthip, A. 2018. Removal of Pb2+ ion from industrial wastewater by
new efficient biosorbents of oyster plant (Tradescantia spathacea steam)
and Negkassar leaf (Mammea siamensis T. Anderson). Chiang Mai Journal
of Science 45(1): 369-379.
Lee, H.W., Cho, H.J., Yim, J.H., Kim, J.M., Jeon, J.K., Sohn, J.M., Yoo,
K-S., Kim, S-S. & Park, Y-K. 2011. Removal of Cu(II)-ion over
amine-functionalized mesoporous silica materials. Journal of Industrial and
Engineering Chemistry 17(3): 504-509. doi:10.1016/j.jiec.2010.09.022
Liu, Y. & Kim, H.J. 2017. Fourier transform infrared spectroscopy
(FT-IR) and simple algorithm analysis for rapid and non-destructive assessment
of developmental cotton fibers. Sensors (Switzerland) 17(7): 1469.
doi:10.3390/s17071469
Masood, F. & Malik, A. 2015. Single and multi-component adsorption
of metal ions by Acinetobacter sp. FM4. Separation Science and
Technology (Philadelphia) 50(6): 892-900. doi:10.1080/01496395.2014.969378
Milicevic, S., Boljanac, T., Martinovic, S.,
Vlahovic, M., Milosevic, V. & Babic, B. 2012. Removal of copper from
aqueous solutions by low cost adsorbent-Kolubara lignite. Fuel Processing
Technology 95: 1-7. doi:10.1016/j.fuproc.2011.11.005
Mohd Salim, R., Khan Chowdhury, A.J., Rayathulhan, R., Yunus, K. &
Sarkar, M.Z.I. 2016. Biosorption of Pb and Cu from aqueous solution using
banana peel powder. Desalination and Water Treatment 57(1): 303-314.
doi:10.1080/19443994.2015.1091613
Naghipour, D., Ashrafi, S.D., Gholamzadeh, M., Taghavi, K. &
Naimi-Joubani, M. 2018. Phytoremediation of heavy metals (Ni, Cd, Pb) by Azolla
filiculoides from aqueous solution: A dataset. Data in Brief 21:
1409-1414. doi:10.1016/j.dib.2018.10.111
Nawaz, M.S., Ferdousi, F.K., Rahman, M.A. & Alam, A.M.S. 2014.
Reversed phase SPE and GC-MS study of polycyclic aromatic hydrocarbons in water
samples from the River Buriganga, Bangladesh. International Scholarly
Research Notices 2014: 234092. doi:10.1155/2014/234092
Norseyrihan,
M.S., Noorashikin, M.S., Adibah, M.S.N. & Yusoff, F. 2016.
Cloud point extraction of methylphenol in water samples with low viscosity of
non-ionic surfactant Sylgard 309 coupled with high-performance liquid
chromatography. Separation Science and Technology (Philadelphia) 51(14):
2386-2393.
Parida, U., Bastia, T.K. & Kar, B.B. 2017. A study on the water
absorption efficiency of porous silica gel prepared from rice husk ash. Asian
Journal of Water, Environment and Pollution 14(1): 83-86.
doi:10.3233/AJW-170010
Park, R., Kim, G., Shen, L., Hong, M. & Navarro, A.E. 2020. Batch
adsorption of heavy metals onto chai tea residues for the bioremediation of
contaminated solutions. Current Topics in Biotechnology 8: 51-62.
Phuengphai, P., Singjanusong, T., Kheangkhun, N. &
Wattanakornsiri, A. 2021. Removal of copper(II) from aqueous solution using
chemically modified fruit peels as efficient low-cost biosorbents. Water
Science and Engineering 14(4): 286-294. doi:10.1016/j.wse.2021.08.003
Şahan, T., Ceylan, H., Şahiner, N. & Aktaş, N. 2010.
Optimization of removal conditions of copper ions from aqueous solutions by Trametes
versicolor. Bioresource Technology 101(12): 4520-4526.
doi:10.1016/j.biortech.2010.01.105
Saleem, J., Bin Shahid, U., Hijab, M., Mackey, H. & McKay, G. 2019.
Production and applications of activated carbons as adsorbents from olive
stones. Biomass Conversion and Biorefinery 9(4): 775-802.
doi:10.1007/s13399-019-00473-7
Semerjian, L. 2018. Removal of heavy metals
(Cu, Pb) from aqueous solutions using pine (Pinus halepensis) sawdust:
Equilibrium, kinetic, and thermodynamic studies. Environmental Technology
and Innovation 12: 91-103. doi:10.1016/j.eti.2018.08.005
Soman, D., Anitha, V. & Arora, A. 2018. Bioremediation of municipal
sewage water with Azolla microphylla. International Journal of
Advanced Research 6(5): 101-108. doi:10.21474/ijar01/7012
Sulaiman, S., Azis, R.S., Ismail, I., Man, H.C., Yusof, K.F.M., Abba,
M.U. & Katibi, K.K. 2021. Adsorptive removal of copper (II) ions from
aqueous solution using a magnetite nano-adsorbent from mill scale waste:
Synthesis, characterization, adsorption and kinetic modelling studies. Nanoscale
Research Letters 16: 168. doi:10.1186/s11671-021-03622-y
Taki, M., Iyoshi, S.,
Ojida, A., Hamachi, I. & Yamamoto, Y. 2010. Development of highly sensitive
fluorescent probes for detection of intracellular copper (I) in living systems. J. Am. Chem. Soc. 132(17): 5938-5939.
Tian, W. & Fan, Z.
2012. Magnetic solid-phase extraction based on AAPTS/Fe3O4 nanoparticles for the determination of trace Cu and Pb in environmental samples
coupled with graphite furnace atomic absorption spectrometry. Atomic
Spectroscopy 33(1): 36-40. doi:10.46770/as.2012.01.006
Uogintė, I.,
Lujanienė, G. & Mažeika, K. 2019. Study of Cu (II), Co (II), Ni (II)
and Pb (II) removal from aqueous solutions using magnetic Prussian blue
nano-sorbent. Journal of Hazardous Materials 369(February): 226-235.
doi:10.1016/j.jhazmat.2019.02.039
Wu, S.S., Yang, H., Guo, F.
& Han, R.M. 2017. Spatial patterns and origins of heavy metals in Sheyang
River catchment in Jiangsu, China based on geographically weighted regression. Science
of the Total Environment 580: 1518-1529. doi:10.1016/j.scitotenv.2016.12.137
Zazouli, M.A., Balarak, D.,
Mahdavi, Y. & Kariminejad, F. 2014a. The application of Azolla
filiculoides biomass in acid blue 15 dye (AB15) removal from aqueous
solutions. J. Bas. Res. Med. Sci. 1(1): 29-37.
Zazouli, M.A., Mahvi,
A.H., Dobaradaran, S., Barafrashtehpour, M., Mahdavi, Y. & Balarak, D.
2014b. Adsorption of fluoride from aqueous solution by modified Azolla
filiculoides. Fluoride 47(4): 349-358.
Zhao, Z., Li, L.,
Geleta, G.S., Ma, L. & Wang, Z. 2017. Polyacrylamide-phytic acid-polydopamine
conducting porous hydrogel for efficient removal of water-soluble dyes. Scientific
Reports 7: 7878. doi:10.1038/s41598-017-08220-6
Zhu, J., Huang,
Q., Pigna, M. & Violante, A. 2012. Competitive sorption of Cu and Cr on
goethite and goethite-bacteria complex. Chemical Engineering Journal 179: 26-32. doi:10.1016/j.cej.2011.07.011
*Pengarang untuk
surat-menyurat; email: noorashikin@ukm.edu.my
|